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I. REVIEW

Last time we:
(1) Defined affine plane curves as vanishing sets in A2 of irreducible polynomials, and

projective plane curves as vanishing sets in P2 of irreducible homogeneous polyno-
mials.

(2) Showed that a plane curve can be given the structure of a Riemann surface. More
precisely,

Proposition 1. Let X : F(x0, x1, x2) = 0 be a nonsingular projective plane curve, where
F ∈ C[x0, x1, x2] is homogeneous. Then X is a compact, connected Riemann surface.
Moreover, at every point of X one can take a ratio of the homogeneous coordinates as a
local coordinate.

II. EXAMPLES OF PROJECTIVE PLANE CURVES

Example 2.
(1) (Elliptic curves) An elliptic curve over a field k is a smooth projective plane curve

given by an equation of the form

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3
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with ai ∈ k. Such an equation is called a Weierstrass equation. Over a field of
characteristic 6= 2 or 3 (like C, for instance), one can make a change of variable and
obtain a short Weierstrass equation of the form

Y2Z = X3 + aXZ2 + bZ3 .

This is the closure in P2 of the affine elliptic curve given by y2 = x3 + ax+ b, where
we embed A2 in P2 as the standard affine open U2 where Z 6= 0. A curve given
by a short Weierstrass equation as above is smooth iff 4a3 + 27b2 6= 0. (This is the
negative of the discriminant of the cubic x3 + ax + b.)

(2) (Fermat curves) A Fermat curve is a projective plane curve given by an equation of
the form

Xd + Yd = Zd

for some d ∈ Z≥1. Again it is the closure of the affine Fermat curve xd + yd = 1 in
P2.

III. MORE COMPLEX ANALYSIS: SINGULARITIES AND LAURENT SERIES

III.1. Laurent series.

Definition 3. Fix z0 ∈ C. A Laurent series centered at z0 is a doubly infinite series of the
form

∞

∑
n=−∞

an(z− z0)
n = · · ·+ a−2

(z− z0)2 +
a−1

z− z0
+ a0 + a1(z− z0) + a2(z− z0)

2 + · · ·

where an ∈ C for all n ∈ Z.

A Laurent series converges on an annulus, i.e., a region of the form

D = {z ∈ C : ρI < |z− z0| < ρO}
for some nonnegative real numbers ρI < ρO. (As with Taylor series, it may also converge
on subsets of the inner or outer boundary.) Note that in the extreme case where ρI = 0,
the set is a punctured disc

D = D∗(z0, ρO) = {z ∈ C : 0 < |z− z0| < ρO}
and when ρO = ∞, the set is the complement of a disc:

D = C \ D(z0, ρI) = {z ∈ C : ρI < |z− z0|} .

Theorem 4. Suppose that f is holomorphic on an annulus

D = {z ∈ C : a < |z− z0| < b}
where 0 ≤ a < b ≤ ∞. Then f can be represented by a Laurent series on D, i.e, there exist
coefficients an such that

f (z) =
∞

∑
n=−∞

an(z− z0)
n

for all z ∈ D. Moreover, this representation is unique: the coefficients an are given by

an =
1

2πi

∫
|z−z0|=r

f (z)
(z− z0)n+1 dz
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for any r ∈ R with a < r < b.

Example 5.

(1) Since ez =
∞

∑
n=0

zn

n!
for all z ∈ C, then e1/z is holomorphic on D = C \ {0} and has

Laurent series

e1/z =
∞

∑
n=0

1
n!zn = 1 +

1
z
+

1
2!z2 + · · ·

or equivalently,

e1/z =
0

∑
n=−∞

zn

(−n)!
.

(2) f (z) = 1/z is holomorphic on the annulus D = {z ∈ C : 1 < |z − 1|} and has
Laurent series

1
z
=

1
1 + (z− 1)

=
1

z− 1
1

1
z−1 + 1

Since 1 < |z− 1| ⇐⇒ 1
|z− 1| < 1, then we can expand this as a geometric series:

1
z
=

1
z− 1

1
1 + 1

z−1

=
1

z− 1

∞

∑
n=0

(−1)n
(

1
z− 1

)n
=

1
z− 1

0

∑
n=−∞

(−1)n(z− 1)n

=
0

∑
n=−∞

(−1)n(z− 1)n−1 =
−1

∑
n=−∞

(−1)n+1(z− 1)n =
1

z− 1
− 1

(z− 1)2 +
1

(z− 1)3 − · · · .

III.2. Singularities and meromorphic functions. There are 3 types of singularities that
can occur: removable singularities, poles, and essential singularities.

Fix z0 ∈ C and r ∈ R>0 and suppose that f is holomorphic on the punctured disc
D∗ := D∗(z0, r), but is not differentiable at z0. Then f can be represented uniquely as a

Laurent series
∞

∑
n=−∞

an(z− z0)
n on D∗.

• (Removable). If an = 0 for all n < 0, then f has a removable singularity at z0. Thus
its Laurent series is really just a Taylor series. It’s removable in that, if we simply
redefine f (z0) = a0, then f becomes differentiable at z0 and hence analytic on the
whole disc D(z0, r).
• (Pole). If an 6= 0 for at least one, but only finitely many n < 0, then f has a pole

at z0. Then its Laurent series has only a finite tail on the lefthand side. Thus there
exists a positive integer m such that a−m 6= 0 but a−n = 0 for all n > m, so the
Laurent series is of the form

f (z) =
a−m

(z− z0)m + · · · a−1

z− z0
+

∞

∑
n=0

an(z− z0)
n .

With this notation, we say that f has a pole of order m at z0.
• (Essential). If an 6= 0 for infinitely many n < 0, then f has an essential singularity at

z0. The behavior of a function near an essential singularity is wild!
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Theorem 6 (Casorati-Weierstrass). Suppose f is analytic on the punctured disc D∗ :=
D∗(z0, r) and has an essential singularity at z0. Then f (D∗) is dense in C.

Theorem 7 (Picard’s Little Theorem). Suppose f is analytic on the punctured disc
D∗ := D∗(z0, r) and has an essential singularity at z0. Then f (D∗) is either all of C,
or C minus a single point.

Remark 8. There’s even Picard’s Great Theorem, which states that f takes on all
these values infinitely often!

Definition 9. The singular part or principal part of f at z0 is the Laurent tail consisting
of all terms with negative powers:

S(z) =
−1

∑
n=−∞

an(z− z0)
n

Example 10. z/z has a removable singularity at z = 0, 1/z has a simple pole at z = 0, and
e1/z has an essential singularity at z = 0.

Definition 11. Let U ⊆ C be open. A function f : U → C is meromorphic on U if f has at
no point of U worse than a pole, i.e., no essential singularities.

Proposition 12. Let U ⊆ C be a domain and f : U → C be meromorphic. Then there exist
holomorphic functions g, h : U → C such that f = g/h.

Remark 13. Let O(U) andM(U) be the set of holomorphic and meromorphic functions,
respectively, on U. The above proposition shows that Frac(O(U)) =M(U). (Technically
only one implication, but the other is easier.)

Theorem 14 (Discreteness of zeroes and poles). Let U ⊆ C be a domain and f : U → C be
a nonconstant meromorphic function. Then the sets of zeroes and poles of f are discrete subsets of
U.

Proof. If the sets of zeroes of f had a limit point, then f would be constant by the Identity
Theorem, contradiction. �

IV. MORPHISMS OF RIEMANN SURFACES

IV.1. Definition and first examples. We now extend the idea of holomorphicity to Rie-
mann surfaces by defining it locally using coordinate charts.

Definition 15. Let X be a Riemann surface. A function f : X → C is holomorphic (resp.,
meromorphic) if for any coordinate map ϕ : U → Û ⊆ C, the function f ◦ ϕ−1 : Û → C is
holomorphic (resp., meromorphic).

Given U ⊆ X open, let

OX(U) := { f : U → C | f is holomorphic}
MX(U) := { f : U → C | f is meromorphic} .

The set of all meromorphic functions X → C is a field called the function field and is
denotedM(X) or C(X).
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Definition 16. A morphism or holomorphic map between Riemann surfaces X1 and X2 is
a continuous map f : X1 → X2 such that ψ ◦ f ◦ ϕ−1 is holomorphic for any choice of
coordinate ϕ on X1 and ψ on X2 for which the composition is defined. The set of all
morphisms X1 → X2 is denoted by Mor(X1, X2).

A holomorphic map with a holomorphic inverse is an isomorphism of Riemann surfaces,
and an isomorphism from a Riemann surface X to itself is an automorphism. The set of
automorphisms of X forms a group, denoted by Aut(X).

Example 17. Here are some examples of morphisms of Riemann surfaces.

(1) Given n ∈ Z≥0, define f : Ĉ→ Ĉ by

f (z) =

{
zn if z 6= ∞
∞ if z = ∞ .

(2) Given n ∈ Z≥0, define

f : P1 → P1

[X : Y] 7→ [Xn : Yn] .

(3) Let E : Y2Z = X3 + Z3 and define

f : E→ P1

[X : Y : Z] 7→ [X : Z] .

(4) Similarly, let C : X3 + Y3 = Z3 and define

f : C → P1

[X : Y : Z] 7→ [X : Z] .

Example 18.
(1) H and D are isomorphic as Riemann surfaces. Such an isomorphism is given by

H→ D

z 7→ z− i
z + i

.

(2) C and D are not isomorphic. In fact Mor(C,D) consists only of the constant maps.
(3) S2, P1, and Ĉ are isomorphic via the maps

P1 → Ĉ

[z0 : z1] 7→ z1/z0

[0 : 1] 7→ ∞

S2 → Ĉ

(x, y, t) 7→ x + iy
1− t

(0, 0, 1) 7→ ∞ .
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IV.2. Fundamental results on morphisms.

Proposition 19. Let X and Y be compact, connected Riemann surfaces. Then every nonconstant
morphism f : X → Y is surjective.

Proof. By the open mapping theorem, f (X) is open. And since f (X) is compact and Y is
Hausdorff, then f (X) is also closed. Since Y is connected, then f (X) = Y. �

Proposition 20. Let X be a Riemann surface and denote by cP ∈ Mor(X, Ĉ) the constant mor-
phism cP(x) = P for all x. Then

M(X) = Mor(X, Ĉ) \ {c∞} .

Proposition 21. M(Ĉ) = C(z), the field of rational functions in one variable.

Proposition 22. Let X be a compact, connected Riemann surface. Then every holomorphic func-
tion f : X → C is a constant map.

Proof. Composing with the inclusion ι : C → Ĉ, we obtain the morphism ι ◦ f : X → Ĉ.
Since nonconstant maps of compact, connected Riemann surfaces are surjective and ∞ /∈
img(ι ◦ f ), then ι ◦ f , and hence f , must be constant. �

Proposition 23. The automorphism groups of P1 and C are:

Aut(P1) =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ C, ad− bc 6= 0

}
∼= PGL2(C) ∼= PSL2(C)

Aut(C) = {z 7→ az + b : a, b ∈ C} .

Proof. Let f be a meromorphic function on P1. Identifying P1 and Ĉ by the isomorphism
given above, then we can consider f as a meromorphic function on Ĉ. By Proposition 21,
then f is a rational function in z, hence can be written

f (z) = λ
(z− b1) · · · (z− bm)

(z− a1) · · · (z− an)
.

In order for f to be bijective, both the numerator and denominator must have degree≤ 1.
Thus

f (z) =
az + b
cz + d

for some a, b, c, d. Moreover, since f is invertible, one can show that ad − bc 6= 0. A
straightforward computation shows that composition of Möbius transformations corre-
sponds to matrix multiplication, so there is a group homomorphism

ϕ : GL2(C)→ Aut(P1)(
a b
c d

)
7→
(

z 7→ az + b
cz + d

)
.

The kernel of ϕ consists of the center

Z(GL2(C)) =

{(
µ 0
0 µ

)
: µ ∈ C×

}
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Since ϕ is surjective, we have

PGL2(C) = GL2(C)/Z(GL2(C)) ∼= Aut(P1) .

Given M ∈ GL2(C), then 
1√

det(M)
0

0
1√

det(M)

M

defines the same element of PGL2(C) and has determinant 1. This shows that PGL2(C) =
PSL2(C), where

PSL2(C) = SL2(C)/Z(SL2(C)) = SL2(C)/{±I} .

Let f ∈ Aut(C). We claim that f extends to an automorphism of Ĉ. It suffices to show
that f cannot have an essential singularity at ∞. If f has an essential singularity at ∞, then
f ({|z| > 1}) is dense in C. But since f is injective, then f ({|z| < 1}) and f ({|z| > 1}) are
disjoint, contradicting denseness of the latter.

Thus f extends to an automorphism of Ĉ, so f is of the form

f (z) =
az + b
cz + d

.

But since f (C) ⊆ C, then f has no poles in C, so c = 0. �

IV.3. Order of vanishing and multiplicity.

Definition 24. Let X be a Riemann surface, P ∈ X, and f ∈ M(X) be a meromorphic
function. Let ϕ be a centered coordinate map at P, so ϕ(P) = 0. Then f can represented
by the Laurent series f ◦ ϕ−1(z) = ∑

n
anzn. The order (of vanishing) of f at P, denoted by

ordP( f ) is the smalles n such that an 6= 0:

ordP( f ) := min{n ∈ Z : an 6= 0} .

If ordP( f )n ≥ 1, then f has a zero of order n at P and if ordP( f ) = −n < 0, then f has a
pole of order n at P.

Remark 25. One can show that the order is independent of the choice of coordinate chart.

Lemma 1. Let f , g ∈ M(X) be meromorphic functions on a Riemann surface X. Then
(1) ordP( f g) = ordP( f ) + ordP(g);
(2) ordP(1/ f ) = − ordP( f );
(3) ordP( f + g) ≥ min{ordP( f ), ordP(g)}.

Remark 26. This shows that ordP is a discrete valuation onM(X) for each point P.

Definition 27. Let f : X → Y be a morphism of Riemann surfaces, P ∈ X. Let ψ be a chart
of Y centered at f (P), so ψ( f (P)) = 0. Then

mP( f ) := ordP(ψ ◦ f )

is the multiplicity of f at P. Equivalently,

mP( f ) = 1 + ordP(ψ ◦ f )′
7



whether ψ is a centered chart or not.
If mP( f ) ≥ 2, then P ∈ X is ramification point or branch point of f , with ramification index

mP( f ). A branch value is the image of a ramification point. Equivalently, we say that f
is ramified above Q ∈ Y if there is some P ∈ f−1(Q) with mP( f ) ≥ 2 and f is ramified at
P ∈ X if P ∈ X and mP( f ) ≥ 2.
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